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Abstract

The mode I extension of a half plane crack in a transversely isotropic solid under 3-D loading is analyzed. Firstly, the

fundamental problem that the crack is subjected to a pair of unit point loads on its faces is considered. Transform

methods are used to reduce the boundary value problem to a single integral equation that can be solved by the Wiener–

Hopf technique. The Cagniard–de Hoop method is employed to invert the transforms. An exact expression is derived

for the mode I stress intensity factor as a function of time and position along the crack edge. Based on the fundamental

solution, the stress intensity factor history due to general loading is then obtained. Some features of the solutions are

discussed through numerical results.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

With the wide usage of macroscopically anisotropic construction materials such as geomaterials, crystals,
and fiber-reinforced composites, elastodynamic analysis of crack problems in such materials has been a

subject of considerable interest. The study of these problems is of particular importance to linear elastic

fracture mechanics to assess the initiation and growth of a developed macro-crack under dynamic loading

conditions, and to nondestructive evaluation for detecting and characterizing the damaged state of the

materials. Elastodynamic stress intensity factors produced by incident plane time-harmonic elastic waves

have been presented by Ohyoshi (1973) and Zhang and Gross (1993) for antiplane cracks in an infinite

transversely isotropic material, and by Dhawan (1982a,b) for inplane cracks. Diffraction of time-harmonic

SH waves by an oblique crack in an orthotropic half plane has been investigated by Lobanov and Novichkov
(1981), while the diffraction of time-harmonic longitudinal and transverse waves by a semi-infinite crack in

an infinite transversely isotropic material has been studied by Norris and Achenbach (1984). Studies for a

periodic array of cracks in transversely isotropic solids have been presented by Zhang (1992) for incident SH

waves, and by Mandal and Ghosh (1994) for incident P waves. Transient elastodynamic analysis of cracks
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has been given by Kassir and Bandyopadhyay (1983) and Ang (1987) for an orthotropic solid, and by Shindo

et al. (1986, 1992) for an orthotropic strip. The dynamic stress intensity factors have been derived by Ang

(1988) for a crack in a layered transversely isotropic material under the action of impact loading, and by Kuo

(1984a,b) for an interface crack between orthotropic and fully anisotropic half planes.
All of the above-mentioned references discuss two-dimensional crack problems. But perhaps, because of

mathematical complexity, three-dimensional crack problems of an anisotropic material under dynamic

loading have not yet received much attention. The interaction of time-harmonic elastic waves with a penny-

shaped crack has been analyzed by Tsai (1982, 1988) who calculated the elastodynamic stress intensity

factors, and by Kundu and Bostrom (1991, 1992) who computed both the scattered far-field and crack

opening displacement (COD). The three-dimensional analysis of cracks in a layered transversely isotropic

media has been treated by Lin and Keer (1989). The ultrasonic crack detection in anisotropic materials has

been investigated by Mattsson et al. (1997). Exact solutions for a half plane crack in a transversely isotropic
material due to both impact loads and moving loads have been obtained by Zhao and Xie (1999, 2000) and

Zhao (2000, 2001).

In the present paper, the mode I extension of a half plane crack in a transversely isotropic solid under

3-D loading is analyzed. Aside from being of importance in the field of dynamic fracture mechanics (Freund,

1990), this problem is of practical interest for earthquake engineering. Since the layered rock with faults is

usually approximated by a cracked transversely isotropic and linearly elastic solid, the problem can be used

to model the initiation of an earthquake. In the analysis, the crack is assumed to propagate with a straight

edge. For engineering applications, this solution may be applied to any case where the crack edge curvature
is large during extension. In order to obtain the solution of general loading, the solution procedure is divided

into two steps. Firstly, the fundamental problem that the crack is subjected to a pair of unit point loads on its

faces is considered. Transform methods are used to reduce the boundary value problem to a single integral

equation that can be solved by the Wiener–Hopf technique. The Cagniard–de Hoop method is employed to

invert the transforms. An exact expression is derived for the mode I stress intensity factor as a function of

time and position along the crack edge. Then, the stress intensity factor history due to general loading is

obtained using the fundamental solution and the method developed by Freund (1990) for the mode I plane

problem. Some features of the solutions are discussed through numerical results.

2. The fundamental solution

2.1. Basic formulas

Consider a transversely isotropic, linear elastic solid containing a half plane crack depicted in Fig. 1. The

solid is initially stress free and at rest. A right-handed rectangular coordinate system is introduced such that
the y-axis coincides with the crack edge, and the half plane crack occupies the area z ¼ 0 and x < 0. It is

assumed that the symmetric axis of the transversely isotropic material is parallel to the z-axis. At time t ¼ 0

a pair of unit point loads appear on the crack faces at the point ð0; 0; 0Þ, one acting on the upper face of the

crack and the other on the lower face. The directions of the forces are opposite and along the inward

normals to each face. Immediately, the crack begins to extend in the x-direction with a constant speed v.
Here, we only consider the case 0 < v < cr, with cr being the Rayleigh wave speed of the material. For the

solution of general loading, the crack is also assumed to propagate with a straight edge.

Let uxðx; y; z; tÞ, uyðx; y; z; tÞ and uzðx; y; z; tÞ denote the relevant displacement components in the x-, y- and
z-directions respectively. Then the stresses in the solid can be written as

rxx ¼ c1

oux
ox

þ c2

ouy
oy

þ c3

ouz
oz

; ð1aÞ
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ryy ¼ c2

oux
ox

þ c1

ouy
oy

þ c3

ouz
oz

; ð1bÞ

rzz ¼ c3

oux
ox

þ c3

ouy
oy

þ c4

ouz
oz

; ð1cÞ

ryz ¼ c5

ouz
oy

�
þ ouy

oz

�
; ð1dÞ

rxz ¼ c5

ouz
ox

�
þ oux

oz

�
; ð1eÞ

rxy ¼
1

2
ðc1 � c2Þ

oux
oy

�
þ ouy

ox

�
; ð1fÞ

where ck (k ¼ 1; 2; 3; 4; 5) are material constants.

Equations of motion for the problem are expressed by

rij;j ¼ q€uui ði ¼ x; y; zÞ; ð2Þ

where q is the material density.
For a transversely isotropic material it is found to be convenient to introduce scalar potentials /ðx; y; z; tÞ,

wðx; y; z; tÞ and hðx; y; z; tÞ, so the displacement components can be represented as

Fig. 1. Geometrical configuration of the elastic solid.
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ux ¼
o/
ox

þ ow
oy

; ð3aÞ

uy ¼
o/
oy

� ow
ox

; ð3bÞ

uz ¼
oh
oz

: ð3cÞ

Eliminating the stresses and displacements in Eq. (2), we obtain, after some manipulation, the three

equations of motion

a4r2w þ a5

o2w
oz2

¼ o2w
ot2

; ð4aÞ

a3r2/ þ a5r2h þ a2

o2h
oz2

¼ o2h
ot2

; ð4bÞ

a1r2/ þ a5

o2/
oz2

þ a3

o2h
oz2

¼ o2/
ot2

; ð4cÞ

where r2 ¼ o2=ox2 þ o2=oy2, and the five constants a1 ¼ c1=q, a2 ¼ c4=q, a3 ¼ ðc5 þ c3Þ=q, a4 ¼ ðc1 � c2Þ=
2q, a5 ¼ c5=q.

Using symmetry with respect to the plane z ¼ 0, we only consider the region zP 0. The boundary

conditions for z ¼ 0 are

rzzðx; y; 0; tÞ ¼ �dðyÞdðxÞHðtÞ; x < vt; �1 < y < þ1; ð5aÞ

rxzðx; y; 0; tÞ ¼ ryzðx; y; 0; tÞ ¼ 0; �1 < x; y < þ1; ð5bÞ

uzðx; y; 0; tÞ ¼ 0; xP vt; �1 < y < þ1: ð5cÞ

In the above equations, Hð�Þ is the Heaviside function and dð�Þ is the Dirac delta function.

The initial conditions are expressed in terms of the potentials as

/ðx; y; z; 0Þ ¼ wðx; y; z; 0Þ ¼ hðx; y; z; 0Þ ¼ 0; ð6aÞ

o/ðx; y; z; 0Þ
ot

¼ owðx; y; z; 0Þ
ot

¼ ohðx; y; z; 0Þ
ot

¼ 0: ð6bÞ

Now we introduce a moving coordinate system ðx1; y; zÞ by defining

x1 ¼ x� vt; y ¼ y; z ¼ z: ð7Þ
In the new coordinate system, Eqs. (4a)–(4c) become

a4r2w þ a5

o2w
oz2

¼ o2w
ot2

� 2v
o2w
ox1ot

þ v2 o
2w
ox2

1

; ð8aÞ

a3r2/ þ a5r2h þ a2

o2h
oz2

¼ o2h
ot2

� 2v
o2h
ox1ot

þ v2 o
2h
ox2

1

; ð8bÞ

a1r2/ þ a5

o2/
oz2

þ a3

o2h
oz2

¼ o2/
ot2

� 2v
o2/
ox1ot

þ v2 o
2/
ox2

1

; ð8cÞ
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where r2 ¼ o2=ox2
1 þ o2=oy2. The boundary conditions for z ¼ 0 can be written as

rzzðx1; y; 0; tÞ ¼ �dðyÞdðx1 þ vtÞHðtÞ; x1 < 0; �1 < y < þ1; ð9aÞ

rxzðx1; y; 0; tÞ ¼ ryzðx1; y; 0; tÞ ¼ 0; �1 < x1; y < þ1; ð9bÞ

uzðx1; y; 0; tÞ ¼ 0; x1 P 0; �1 < y < þ1: ð9cÞ

2.2. The solution procedure

Transform methods and the Wiener–Hopf technique are used to solve this fundamental problem. The

first step is to apply a one-sided Laplace transform over time to the partial differential equations (8a)–(8c),

taking into account the initial conditions. The transformed function is denoted by a superposed hat, for

example,

/
_

ðx1; y; z; sÞ ¼
Z 1

0

/ðx1; y; z; tÞe�st dt; ð10Þ

where the complex number s has a positive real part. Next, a two-sided Laplace transform is introduced

over the y coordinate. The complex transform parameter is sn, and the transformed function is denoted by a

bar, i.e.

/ðx1; n; z; sÞ ¼
Z þ1

�1
/
_

ðx1; y; z; sÞe�sny dy: ð11Þ

Finally, a two-sided Laplace transform is used to suppress the dependence on x1. The complex transform
parameter is sg, and the transformed function is denoted as

/	ðg; n; z; sÞ ¼
Z þ1

�1
/ðx1; n; z; sÞe�sgx1 dx1: ð12Þ

The partial differential equations (8a)–(8c) are reduced to

�a4s2l2
3w

	 þ a5

d2w	

dz2
¼ 0; ð13aÞ

a3s2ðg2 þ n2Þ/	 � a5s2l2
2h

	 þ a2

d2h	

dz2
¼ 0; ð13bÞ

�a1s2l2
1/

	 þ a5

d2/	

dz2
þ a3

d2h	

dz2
¼ 0; ð13cÞ

where

l1ðg; nÞ ¼ ½p2
1ð1 � vgÞ2 � g2 � n2�1=2

; ð14Þ

l2ðg; nÞ ¼ ½p2
2ð1 � vgÞ2 � g2 � n2�1=2

; ð15Þ

l3ðg; nÞ ¼ ½p2
3ð1 � vgÞ2 � g2 � n2�1=2

; ð16Þ

p2
1 ¼ a�1

1 ; p2
2 ¼ a�1

5 ; p2
3 ¼ a�1

4 : ð17Þ
The branch points of l1ðg; nÞ, l2ðg; nÞ and l3ðg; nÞ can be obtained by letting

l1ðg; nÞ ¼ 0; l2ðg; nÞ ¼ 0; l3ðg; nÞ ¼ 0; ð18Þ
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which yield

g1;2 ¼
�p2

1v�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p4

1v2 þ ð1 � p2
1v2Þðp2

1 � n2Þ
q

1 � p2
1v2

for l1ðg; nÞ; ð19aÞ

g3;4 ¼
�p2

2v�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p4

2v2 þ ð1 � p2
2v2Þðp2

2 � n2Þ
q

1 � p2
2v2

for l2ðg; nÞ; ð19bÞ

g5;6 ¼
�p2

3v�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p4

3v2 þ ð1 � p2
3v2Þðp2

3 � n2Þ
q

1 � p2
3v2

for l3ðg; nÞ: ð19cÞ

The complex g plane is cut along �1 < ReðgÞ < g2, g1 < ReðgÞ < 1, ImðgÞ ¼ 0 so that Reðl1ÞP 0 in

the entire cut g plane for each value of g, and likewise for Reðl2; l3ÞP 0.

The solutions of Eqs. (13a)–(13c), bounded as z ! 1, are

/	 ¼ Ae�sk1z þ Be�sk2z; ð20aÞ

h	 ¼ a1l2
1 � a5k

2
1

a3k
2
1

Ae�sk1z þ a1l2
1 � a5k

2
2

a3k
2
2

Be�sk2z; ð20bÞ

w	 ¼ Ce�sk3z; ð20cÞ
where A, B, C are arbitrary functions of n and g, and

k2
1;2 ¼

Lðg2 þ n2Þ þ ða2 þ a5Þð1 � vgÞ2

2a2a5

� Lðg2 þ n2Þ þ ða2 þ a5Þð1 � vgÞ2

2a2a5

" #2
8<
: � a1

a2

l2
1l

2
2

9=
;

1=2

; ð21Þ

k3 ¼
ffiffiffiffiffi
a4

a5

r
l3; ð22Þ

L ¼ a2
3 � a2

5 � a1a2: ð23Þ
The boundary conditions are now transformed. With reference to Eqs. (9a)–(9c), define two functions

rþðx1; y; tÞ and u�ðx1; y; tÞ by

rþðx1; y; tÞ ¼
rzzðx1; y; 0; tÞ; x1 P 0;
0; x1 < 0;

�
ð24aÞ

u�ðx1; y; tÞ ¼
0; x1 P 0;
uzðx1; y; 0; tÞ; x1 < 0:

�
ð24bÞ

The boundary conditions are then transformed to

qs2 ða3

�
� a5Þðg2 þ n2Þ þ a2

a3

ða1l
2
1 � a5k

2
1Þ
�
Aþ qs2 ða3

�
� a5Þðg2 þ n2Þ þ a2

a3

ða1l
2
1 � a5k

2
2Þ
�
B

¼ 1

s
Rþðg; n; sÞ �

1

sð1 � vgÞ ; ð25aÞ

a1l2
1 � a5k

2
1

a3k1

�
þ k1

�
nAþ a1l2

1 � a5k
2
2

a3k2

�
þ k2

�
nB� gk3C ¼ 0; ð25bÞ
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a1l2
1 � a5k

2
1

a3k1

�
þ k1

�
gAþ a1l2

1 � a5k
2
2

a3k2

�
þ k2

�
gBþ nk3C ¼ 0; ð25cÞ

�s3 a1l2
1 � a5k

2
1

a3k1

A
�

þ a1l2
1 � a5k

2
2

a3k2

B
�

¼ U�ðg; n; sÞ; ð25dÞ

where

Rþðg; n; sÞ ¼ s
Z þ1

�1

Z þ1

�1
r
_

þðx1; y; sÞ exp½�sðny þ gx1Þ�dy dx1; ð26Þ

U�ðg; n; sÞ ¼ s2

Z þ1

�1

Z þ1

�1
u
_

�ðx1; y; sÞ exp½�sðny þ gx1Þ�dy dx1: ð27Þ

If A, B, C are eliminated from Eqs. (25a)–(25d), the result is a single equation involving the two re-

maining unknown functions Rþ and U�, namely

� qRðg; nÞ
l1ðg; nÞ

U� ¼ 1

vg � 1
þ Rþ; ð28Þ

in which

Rðg; nÞ ¼ f½ða3 � a5Þ2 � a1a2�ðg2 þ n2Þ þ a2ð1 � vgÞ2gl2 þ
ffiffiffiffiffiffiffiffiffi
a1a2

p
l1ð1 � vgÞ2ffiffiffiffiffiffiffiffiffi

a1a2

p ðk1 þ k2Þ
: ð29Þ

Eq. (28) is of the type that can be solved by the Wiener–Hopf technique, so we may determine Rþ and U�
with a single equation. The Wiener–Hopf procedure requires that the mixed functions in (28) must be

factored into the product of sectionally analytic functions. To do this, we rewrite Rðg; nÞ into the following

form:

Rðg; nÞ ¼ a1a5½a1a2 � ða3 � a5Þ2�ðl1 þ l2Þ
4

ffiffiffiffiffiffiffiffiffi
a1a2

p ða1 � a5Þðk1 þ k2Þð1 � vgÞ2
f4ðg2 þ n2Þl1l2 þ ðl2

2 � g2 � n2Þ2

þ P ð1 � vgÞ2½ðg2 þ n2Þ þ l1l2� þ Qð1 � vgÞ4g; ð30Þ

where

P ¼ 4ð ffiffiffiffiffiffiffiffiffi
a1a2

p � a2Þ
a1a2 � ða3 � a5Þ2

; ð31Þ

Q ¼ Pffiffiffiffiffiffiffiffiffi
a1a2

p þ a2ða2 � a1Þ þ ða3 þ a5 � a2Þða3 þ a2 � 3a5Þ
a2

5½a1a2 � ða3 � a5Þ2�
: ð32Þ

It is proved that Rðg; nÞð1 � vgÞ�2 ¼ 0 has only two roots in the g plane, which can be expressed as

c1;2 ¼
�c2v�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4v2 þ ð1 � c2v2Þðc2 � n2Þ

q
1 � c2v2

; ð33Þ

where c ¼ c�1
r .

Introduce a new function by defining

Sðg; nÞ ¼ � Rðg; nÞ
k1k2ðg � c1Þðg � c2Þð1 � vgÞ2

: ð34Þ
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Then, we have

Sðg; nÞ ¼ S1ðg; nÞS2ðg; nÞ; ð35Þ
where

S1ðg; nÞ ¼
a1a5

2ða5 � a1Þk1

� 4ðg2 þ n2Þl1l2 þ ðl2
2 � g2 � n2Þ2 þ P ð1 � vgÞ2½ðg2 þ n2Þ þ l1l2� þ Qð1 � vgÞ4

ð1 � vgÞ4ðg � c1Þðg � c2Þ
; ð36Þ

S2ðg; nÞ ¼
a1a2 � ða3 � a5Þ2

2k2

ffiffiffiffiffiffiffiffiffi
a1a2

p
l1 þ l2

k1 þ k2

; ð37Þ

k1 ¼
a1a5k3

2ða5 � a1Þv4
; ð38Þ

k2 ¼
ffiffiffiffiffiffiffi
a5

2a1

r ½a1a2 � ða3 � a5Þ2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � p2

1v2
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � p2

2v2
p� �

f�
ffiffiffiffi
k4

p
� ½Lþ ða2 þ a5Þv2�g1=2 þ f

ffiffiffiffi
k4

p
� ½Lþ ða2 þ a5Þv2�g1=2

; ð39Þ

k3 ¼ �4ð1 � p2
1v

2Þ1=2ð1 � p2
2v

2Þ1=2 þ ð2 � p2
2v

2Þ2 þ Pv2½1 � ð1 � p2
1v

2Þ1=2ð1 � p2
2v

2Þ1=2� þ Qv4; ð40Þ

k4 ¼ ½Lþ ða2 þ a5Þv2�2 � 4a1a2a2
5ð1 � p2

1v
2Þð1 � p2

2v
2Þ: ð41Þ

The function S1ðg; nÞ has no poles or zeros in the complex g plane, the only singularities being the branch

points of the functions l1ðg; nÞ and l2ðg; nÞ. In the entire cut g plane, S1ðg; nÞ is analytic. When jgj ! 1,
S1ðg; nÞ ! 1. According to Cauchy�s integral theorem, S1ðg; nÞ can be decomposed into

S1ðg; nÞ ¼ Sþ
1 ðg; nÞS�

1 ðg; nÞ; ð42Þ
where

S�
1 ðg; nÞ ¼ exp

(
� 1

p

Z p2

p1

tg�1 ð412 þ P Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2 � 12
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 � p2
1

p
ðp2

2 � 212Þ2 þ P12 þ Q

" #
f�ðg; n; 1Þd1

)
; ð43Þ

f�ðg; n; 1Þ ¼
1 � 2v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 þ v2n2Þ12 � n2

q
þ ð1 þ v2n2Þð1 þ v212Þ � 2v2n2

� �

ð1 � v212Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 þ v2n2Þ12 � n2

q
� v12 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 þ v2n2Þ12 � n2

q
� gð1 � v212Þ

� � : ð44Þ

The functions Sþ
1 ðg; nÞ and S�

1 ðg; nÞ are analytic and nonzero in the regions ReðgÞ > g2 and ReðgÞ < g1,

respectively.

The singularities of S2ðg; nÞ in the complex g plane are the branch points of the functions k1ðg; nÞ,
k2ðg; nÞ, l1ðg; nÞ and l2ðg; nÞ. The functions k1ðg; nÞ and k2ðg; nÞ possess two kinds of branch points. The

first kind of branch points are those given by Eqs. (19a) and (19b), which correspond to k1ðg; nÞ ¼ 0 or

k2ðg; nÞ ¼ 0. The second kind of branch points are where k2
2ðg; nÞ � k2

1ðg; nÞ is zero. Such points will appear

in pairs. Between the two points of a given pair we may define a branch cut such that k1ðg; nÞ þ k2ðg; nÞ is
continuous across the cut while k1ðg; nÞ and k2ðg; nÞ are each discontinuous. Therefore, these cuts give no

contribution to the analytic factorization. So we obtain via the use of Cauchy�s integral theorem

S2ðg; nÞ ¼ Sþ
2 ðg; nÞS�

2 ðg; nÞ; ð45Þ
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where

S�
2 ðg; nÞ ¼ exp

(
� 1

p

Z p2

p1

tg�1 b1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 � p2

1

p
� b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2 � 12
p

b1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2 � 12
p

þ b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 � p2

1

p
" #

f�ðg; n; 1Þd1

)
; ð46Þ

b1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L12 þ a2 þ a5

2a2a5

� �2

þ a1

a2

ð12 � p2
1Þðp2

2 � 12Þ

s8<
: � L12 þ a2 þ a5

2a2a5

9=
;

1=2

: ð47Þ

The functions Sþ
2 ðg; nÞ and S�

2 ðg; nÞ are analytic and nonzero in the regions ReðgÞ > g2 and ReðgÞ < g1,

respectively.

Thus we have

Sðg; nÞ ¼ Sþðg; nÞS�ðg; nÞ ð48Þ
with

S�ðg; nÞ ¼ S�
1 ðg; nÞS�

2 ðg; nÞ: ð49Þ
We also have

l1ðg; nÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � p2

1v2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
g � g2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
g1 � g

p
: ð50Þ

Let

Fþðg; nÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g � g2

p

ðg � c2ÞSþðg; nÞ
ð51aÞ

and

F�ðg; nÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g1 � g

p

ðg � c1ÞS�ðg; nÞ
: ð51bÞ

Then Eq. (28) becomes

qk1k2ð1 � vgÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � p2

1v2
p

F�ðg; nÞ
U� ¼ 1

vg � 1
Fþðg; nÞ þ Fþðg; nÞRþ: ð52Þ

It is noticed that the only singularity of the mixed function in (52) in the right half plane is a simple pole

at g ¼ v�1. This singularity can be removed by requiring the residue to be zero, so we obtain

qk1k2ð1 � vgÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � p2

1v2
p

F�ðg; nÞ
U� � 1

vg � 1
Fþðv�1; nÞ ¼ 1

vg � 1
½Fþðg; nÞ � Fþðv�1; nÞ� þ Fþðg; nÞRþ: ð53Þ

The right-hand side of Eq. (53) is analytic in the region ReðgÞ > g2, and the left-hand side is analytic in

ReðgÞ < minðg1; v
�1Þ. Therefore, by analytic continuation, each side of (53) represents the same entire

function Eðg; n; sÞ. According to Liouville�s theorem, a bounded entire function is a constant. In this case,

Eðg; n; sÞ is bounded in the finite plane and Eðg; n; sÞ ! 0 as jgj ! 1. Thus Eðg; n; sÞ � 0, and we obtain

Rþ ¼ 1

vg � 1

Fþðv�1; nÞ
Fþðg; nÞ

�
� 1

�
; ð54Þ

U� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � p2

1v2
p

qk1k2ðvg � 1Þ3
Fþðv�1; nÞF�ðg; nÞ: ð55Þ
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2.3. The dynamic stress intensity factor

When the normal stress on the crack plane z ¼ 0 has been obtained, we come to the determination of the

dynamic stress intensity factor for the fundamental problem. The stress intensity factor in the Laplace
transform dormain can be expressed as

�kkF
I ðn; sÞ ¼ lim

x1!0þ
½ð2px1Þ1=2rþðx1; n; sÞ�: ð56Þ

From the Abel theorem concerning asymptotic properties of transforms and by virtue of Eqs. (26) and

(54), we obtain

�kkF
I ðn; sÞ ¼ lim

g!1
½ð2sgÞ1=2Rþ � s�1� ¼

ffiffiffi
2

p

s1=2v
Fþðv�1; nÞ: ð57Þ

Further, we have

�kkF
I ðn; sÞ ¼

ffiffiffi
2

p

s1=2v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v�1 � g2

p
ðv�1 � c2ÞSþðv�1; nÞ : ð58Þ

The inverse two-sided Laplace transform of (58) is

k
_F

I ðy; sÞ ¼
s

2pi

Z a0þi1

a0�i1

ffiffiffi
2

p

s1=2v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v�1 � g2

p
ðv�1 � c2ÞSþðv�1; nÞ expðsnyÞdn; ð59Þ

where y > 0 is assumed for the time being.

The Cagniard–de Hoop method is used for the inversion. It is easily known that the integrand of (59) has

the branch points of n ¼ �a0, n ¼ �b0 and n ¼ �c0 in the n plane with

a0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

1

1 � p2
1v2

s
; b0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2

1 � p2
2v2

s
; c0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

1 � c2v2

r
: ð60Þ

In order that the final inversion of the one-sided Laplace transform over time may be performed by

inspection, we now shift the n integration to the contour as shown in Fig. 2. The integrand of (59) is analytic

and single-valued inside this contour. According to Cauchy�s integral theorem and Jordan�s lemma, we have

k
_F

I ðy; sÞ ¼ �
ffiffiffiffiffi
2s

p
ð1 � c2v2Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vð1 � p2

1v2Þ
p Z 1

a0

Im

1 þ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

1 � ð1 � p2
1v2Þn2

q� �1=2

1 þ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � ð1 � c2v2Þn2

q� �
Sþðv�1; nÞ

8>>><
>>>:

9>>>=
>>>;

expð�snyÞdn: ð61Þ

Upon noting that kF
I ðy; tÞ is an even function of y and from the convolution theorem for Laplace

transform, we finally obtain

kF
I ðy; tÞ ¼

ffiffiffi
2

p
ðc2v2 � 1Þ

p3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vð1 � p2

1v2Þ
p Z t=jyj

a0

o

on
Im

1 þ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

1 � ð1 � p2
1v2Þn2

q� �1=2

1 þ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � ð1 � c2v2Þn2

q� �
Sþðv�1; nÞ

8>>><
>>>:

9>>>=
>>>;

dn

yj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t � jyjn

p : ð62Þ

3. Case of general loading

We now consider the extension of the half plane crack under general loading. Suppose that the crack is

stationary for t < 0 under equilibrium loading, and the resulting normal stress in the z-direction along x > 0,
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z ¼ 0 is rzzðx; y; 0Þ ¼ pðx; yÞ. At time t ¼ 0, the crack begins to extend in the x-direction with a constant speed

v, creating new traction-free surfaces ð0 < x < vt; �1 < y < 1; z ¼ �0Þ. The stress wave field associated

with the extension may be considered to be the superposition of the dynamic field created by imposing
tractions �pðx; yÞ ð0 < x < vt; �1 < y < 1; z ¼ �0Þ on the crack faces, and the static field for t < 0.

The dynamic field due to the action of �pðx; yÞ ð0 < x < vt; �1 < y < 1; z ¼ �0Þ on the crack faces

can be obtained by using the solution of Section 2. Following the arguments used by Freund (1990) for the

mode I plane problem, the general expression of the stress intensity factor may be written as

KIðy; tÞ ¼
Z 1

�1

Z vt

0

kF
I ðy � y0; t � x0=vÞpðx0; y 0Þdx0 dy0; ð63Þ

which is useful for numerical computation when a general pðx; yÞ is known.

In the next, particular tractions of constant distribution are considered. Firstly, we discuss the case of
line load action. The traction can be expressed as

pðx; yÞ ¼ �p0dðxÞ; �y0 < y < y0: ð64Þ
The stress intensity factor for this case is

KIðy; tÞ ¼ p0

Z y0

�y0

kF
I ðy � y 0; tÞdy0: ð65Þ

The Laplace transform of Eq. (65) is given by

K
_

Iðy; sÞ ¼ p0

Z y0

�y0

k
_F

I ðy � y0; sÞdy0: ð66Þ

The substitution of (59) into the above equation leads to

K
_

Iðy; sÞ ¼
p0

2pi

Z a0þi1

a0�i1

1

n
�kkF

I ðn; sÞ exp½snðy þ y0Þ�dn � p0

2pi

Z a0þi1

a0�i1

1

n
�kkF

I ðn; sÞ exp½snðy � y0Þ�dn: ð67Þ

Fig. 2. The integration contour.
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From Eq. (58) and in a similar fashion as Section 2.3, we obtain

KIðy; tÞ ¼
ffiffiffi
2

p
p0

p3=2
J1ðjyj½ � y0; tÞ � J1ðjyj þ y0; tÞ� for jyj > y0; ð68aÞ

KIðy; tÞ ¼
ffiffiffi
2

p
p0ð1 � c2v2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ vp1

p

ð1 þ vcÞSþðv�1; 0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pvð1 � p2

1v2Þ
p t�1=2

�
ffiffiffi
2

p
p0

p3=2
J1ðjyj½ � y0; tÞ þ J1ðjyj þ y0; tÞ� for jyj < y0; ð68bÞ

where

J1ðk; tÞ ¼
ð1 � c2v2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vð1 � p2

1v2Þ
p Z t=k

a0

Im

1 þ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

1 � ð1 � p2
1v2Þn2

q� �1=2

n 1 þ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � ð1 � c2v2Þn2

q� �
Sþðv�1; nÞ

8>>><
>>>:

9>>>=
>>>;

dnffiffiffiffiffiffiffiffiffiffiffiffiffi
t � kn

p : ð69Þ

Further, the solution for the traction of constant rectangular distribution can be obtained. In this case,

the traction is expressed as

pðx; yÞ ¼ �p0; 0 < x < vt; �y0 < y < y0: ð70Þ
The stress intensity factor for this case can be written as

Kp
I ðy; tÞ ¼

Z vt

0

KIðy; t � x0=vÞdx0: ð71Þ

Using Eqs. (68a) and (68b), we finally have

Kp
I ðy; tÞ ¼

2
ffiffiffi
2

p
p0

p3=2
J2ðjyj½ � y0; tÞ � J2ðjyj þ y0; tÞ� for jyj > y0; ð72aÞ

Kp
I ðy; tÞ ¼

2
ffiffiffi
2

p
p0vð1 � c2v2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ vp1

p

ð1 þ vcÞSþðv�1; 0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1 � p2

1v2Þ
p t1=2 � 2

ffiffiffi
2

p
p0

p3=2
J2ðjyj½ � y0; tÞ

þ J2ðjyj þ y0; tÞ� for jyj < y0; ð72bÞ
where

J2ðk; tÞ ¼
vð1 � c2v2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � p2

1v2Þ
p Z t=k

a0

Im

1 þ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

1 � ð1 � p2
1v2Þn2

q� �1=2

n 1 þ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � ð1 � c2v2Þn2

q� �
Sþðv�1; nÞ

8>>><
>>>:

9>>>=
>>>;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t � kn

p
dn: ð73Þ

4. Numerical results and discussions

The integrals in Eqs. (62) and (73) cannot be evaluated in terms of elementary functions. To make the

physical meaning clear, a numerical integration of them is carried out for Poisson�s material which is

isotropic and for Beryl which is transversely isotropic.

Poisson�s material: a1 ¼ a2 ¼ 3a5, a3 ¼ 2a5, a4 ¼ a5, c ¼ 1:088=
ffiffiffiffiffi
a5

p
.

Beryl: a1 ¼ 4:12484a5, a2 ¼ 3:61802a5, a3 ¼ 2:01199a5, a4 ¼ 1:17363a5, c ¼ 1:04645=
ffiffiffiffiffi
a5

p
.
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Numerical results for the fundamental solution are shown in Figs. 3 and 4 with the solid line representing

Poisson�s material and the dashed line representing Beryl. In the figures, the stress intensity factor history

has been normalized by SIF ¼ kF
I ðy; tÞðpyÞ

3=2
.

It is seen from the figures that upon the arrival of the dilatational wave, the initial response is dilatational
and the crack faces tend to move towards each other, which is reflected by the stress intensity factor being

negative. This phenomenon is intensified by the action of shear waves. When the Rayleigh wave arrives, the

stress intensity factor becomes logarithmically singular. For Beryl, this process is delayed due to the ma-

terial anisotropy. Thereafter, the crack faces begin to open and the stress intensity factor increases until it

reaches a maximum. Then, the stress intensity factor decays gradually towards its limiting value of zero. It

is seen that the presence of the anisotropy leads to the increase of the stress intensity factor.

It is observed that the stress intensity factor history is greatly affected by the extension speed of the crack.

The faster the crack extends, the smaller the stress intensity factor becomes.
Figs. 5 and 6 display the variation of J2ðk; tÞ=

ffiffiffi
k

p
with normalized time. Unlike the fundamental solution,

there is no singularity in the stress intensity factor when the Rayleigh wave arrives. It is also observed that

the anisotropy leads to the increase of J2ðk; tÞ=
ffiffiffi
k

p
.

Fig. 3. The dynamic stress intensity factor history (v ¼ 0:8cr).

Fig. 4. The dynamic stress intensity factor history (v ¼ 0:4cr).
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5. The conclusions

The mode I extension of a half plane crack in a transversely isotropic solid under 3-D loading is ana-

lyzed. Firstly, the fundamental problem that the crack is subjected to a pair of unit point loads on its faces

is considered. The solution procedure is based on the use of transform methods, the Wiener–Hopf tech-

nique and the Cagniard–de Hoop method. An exact expression is derived for the mode I stress intensity
factor as a function of time and position along the crack edge. Then, the stress intensity factor history due

to general loading is obtained using the fundamental solution. Some features of the solutions are discussed

through numerical results.

In the analysis, the half plane crack is assumed to propagate with a straight edge. For practical appli-

cations, this solution can be applied to the cases when loads are almost uniformly distributed in the y-

direction. Under general loading, the crack edge may become curved during extension. However, the

solution can also be applied when the edge curvature is large. For other cases, the curved edge may be

treated as the perturbation of a straight line moving at a constant speed v and described as

x ¼ vt þ eg1ðy; tÞ þ e2g2ðy; tÞ þ � � � ; ð74Þ

Fig. 5. The variation of J with normalized time T0 ðJ ¼ J2ðk; tÞ=
ffiffiffi
k

p
; T0 ¼ t=ða0kÞ; v ¼ 0:8crÞ.

Fig. 6. The variation of J with normalized time T0 ðJ ¼ J2ðk; tÞ=
ffiffiffi
k

p
; T0 ¼ t=ða0kÞ; v ¼ 0:4crÞ.
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where e is a small parameter and giðy; tÞ ði ¼ 1; 2; . . .Þ are functions determined with an initiation criterion.

From the above equation, we can see that the present solution serves as the zero order approximation of the

problem. In order to obtain a complete solution, giðy; tÞ ði ¼ 1; 2; . . .Þ must be determined firstly with an

initiation criterion. Unfortunately, this criterion has not yet been available for three-dimensional crack
problems.
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