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Abstract

The mode I extension of a half plane crack in a transversely isotropic solid under 3-D loading is analyzed. Firstly, the
fundamental problem that the crack is subjected to a pair of unit point loads on its faces is considered. Transform
methods are used to reduce the boundary value problem to a single integral equation that can be solved by the Wiener—
Hopf technique. The Cagniard—-de Hoop method is employed to invert the transforms. An exact expression is derived
for the mode I stress intensity factor as a function of time and position along the crack edge. Based on the fundamental
solution, the stress intensity factor history due to general loading is then obtained. Some features of the solutions are
discussed through numerical results.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

With the wide usage of macroscopically anisotropic construction materials such as geomaterials, crystals,
and fiber-reinforced composites, elastodynamic analysis of crack problems in such materials has been a
subject of considerable interest. The study of these problems is of particular importance to linear elastic
fracture mechanics to assess the initiation and growth of a developed macro-crack under dynamic loading
conditions, and to nondestructive evaluation for detecting and characterizing the damaged state of the
materials. Elastodynamic stress intensity factors produced by incident plane time-harmonic elastic waves
have been presented by Ohyoshi (1973) and Zhang and Gross (1993) for antiplane cracks in an infinite
transversely isotropic material, and by Dhawan (1982a,b) for inplane cracks. Diffraction of time-harmonic
SH waves by an oblique crack in an orthotropic half plane has been investigated by Lobanov and Novichkov
(1981), while the diffraction of time-harmonic longitudinal and transverse waves by a semi-infinite crack in
an infinite transversely isotropic material has been studied by Norris and Achenbach (1984). Studies for a
periodic array of cracks in transversely isotropic solids have been presented by Zhang (1992) for incident SH
waves, and by Mandal and Ghosh (1994) for incident P waves. Transient elastodynamic analysis of cracks
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has been given by Kassir and Bandyopadhyay (1983) and Ang (1987) for an orthotropic solid, and by Shindo
et al. (1986, 1992) for an orthotropic strip. The dynamic stress intensity factors have been derived by Ang
(1988) for a crack in a layered transversely isotropic material under the action of impact loading, and by Kuo
(1984a,b) for an interface crack between orthotropic and fully anisotropic half planes.

All of the above-mentioned references discuss two-dimensional crack problems. But perhaps, because of
mathematical complexity, three-dimensional crack problems of an anisotropic material under dynamic
loading have not yet received much attention. The interaction of time-harmonic elastic waves with a penny-
shaped crack has been analyzed by Tsai (1982, 1988) who calculated the elastodynamic stress intensity
factors, and by Kundu and Bostrom (1991, 1992) who computed both the scattered far-field and crack
opening displacement (COD). The three-dimensional analysis of cracks in a layered transversely isotropic
media has been treated by Lin and Keer (1989). The ultrasonic crack detection in anisotropic materials has
been investigated by Mattsson et al. (1997). Exact solutions for a half plane crack in a transversely isotropic
material due to both impact loads and moving loads have been obtained by Zhao and Xie (1999, 2000) and
Zhao (2000, 2001).

In the present paper, the mode I extension of a half plane crack in a transversely isotropic solid under
3-D loading is analyzed. Aside from being of importance in the field of dynamic fracture mechanics (Freund,
1990), this problem is of practical interest for earthquake engineering. Since the layered rock with faults is
usually approximated by a cracked transversely isotropic and linearly elastic solid, the problem can be used
to model the initiation of an earthquake. In the analysis, the crack is assumed to propagate with a straight
edge. For engineering applications, this solution may be applied to any case where the crack edge curvature
is large during extension. In order to obtain the solution of general loading, the solution procedure is divided
into two steps. Firstly, the fundamental problem that the crack is subjected to a pair of unit point loads on its
faces is considered. Transform methods are used to reduce the boundary value problem to a single integral
equation that can be solved by the Wiener—Hopf technique. The Cagniard-de Hoop method is employed to
invert the transforms. An exact expression is derived for the mode I stress intensity factor as a function of
time and position along the crack edge. Then, the stress intensity factor history due to general loading is
obtained using the fundamental solution and the method developed by Freund (1990) for the mode I plane
problem. Some features of the solutions are discussed through numerical results.

2. The fundamental solution
2.1. Basic formulas

Consider a transversely isotropic, linear elastic solid containing a half plane crack depicted in Fig. 1. The
solid is initially stress free and at rest. A right-handed rectangular coordinate system is introduced such that
the y-axis coincides with the crack edge, and the half plane crack occupies the area z =0 and x < 0. It is
assumed that the symmetric axis of the transversely isotropic material is parallel to the z-axis. At time ¢t = 0
a pair of unit point loads appear on the crack faces at the point (0,0,0), one acting on the upper face of the
crack and the other on the lower face. The directions of the forces are opposite and along the inward
normals to each face. Immediately, the crack begins to extend in the x-direction with a constant speed v.
Here, we only consider the case 0 < v < ¢,, with ¢, being the Rayleigh wave speed of the material. For the
solution of general loading, the crack is also assumed to propagate with a straight edge.

Let u.(x,y,z,t), uy(x,,z,t) and u.(x, y, z, t) denote the relevant displacement components in the x-, y- and
z-directions respectively. Then the stresses in the solid can be written as

Ox oy o (12)
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Oy = C2 ﬁx‘ + ¢ 3 +c3 % (1b)
Ou, Ou, Ou,

0,, =C3 ax +C3a—;+04 az, (IC)
Ou. Ou,

e =cs| 3 2. (14)
Ou, Ou,

axz_05|:ax+azj|7 (16)

1 Ou, Ou
oy =3 -e)| ot 2, (1)
where ¢, (k = 1,2,3,4,5) are material constants.
Equations of motion for the problem are expressed by
Ojjj = p”z (l = xayvz)a (2)

where p is the material density.
For a transversely isotropic material it is found to be convenient to introduce scalar potentials ¢ (x, y,z, 1),
V(x,y,z,t) and 0(x,y,z,t), so the displacement components can be represented as
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0 oy
=t (3a)
_0p Y
u, = a — &7 (3b)
00
u, = & . (3C)

Eliminating the stresses and displacements in Eq. (2), we obtain, after some manipulation, the three
equations of motion

2y oy
WVt asT = 5n
2 ) 2%0
a3V (f>+a5V 9+a2——
0z2
*2p %0
2
aViptasgrthgs =

&0

o’

¢

or’

(4a)

(4b)

(4c)

where V2 = 0?/0x* + 8% /0y?, and the five constants a; = ¢;/p, ay = ¢4/p, a3 = (¢cs +¢3)/p, ay = (c1 — ¢2)/

2p, as = cs/p.

Using symmetry with respect to the plane z =0, we only consider the region z > 0. The boundary

conditions for z = 0 are

0(x,»,0,) = —=0(y)o(x)H(t), x<wvt, —00 <y < o0,

0.:(x,»,0,1) = 6,.(x,,0,1)

u(x,»,0,6) =0, x>=ut,

In the above equations, H(-) is the Heaviside function and J(-) is the Dirac delta function.

=0, —oco<x,y<+4oo,

—00 <y < +00.

The initial conditions are expressed in terms of the potentials as
¢(x’y7z7 0) = lp(x7yﬂz7 O) = 9(x7y7z7 0) = 07

a¢(x7y»270) aw(xvyvzvo)

_ 69(%%27 0) -0

ot ot
Now we introduce a moving

xp=x—uvt, y=y, z=

ot
coordinate system (x,y,z) by defining

Z.

In the new coordinate system, Eqs. (4a)—(4c) become

oy Py . oy L,
2 - r_-v_ 2~ 7
VYO o = e Ve T e
20 @0 0 0%
2 2 -7 2- 7
asV-¢ +asV-0+a, 2o U@xlét v ac
29 F0_F_ P9 P

a1v2¢+a5§+a3@:

2 e U

(5a)
(5b)

(5¢)
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where V? = 0?/0x] + 02/0y?. The boundary conditions for z = 0 can be written as

0(x1,,0,8) = =0(»)o(x; + vt)H(£), x1 <0, —o0 <y < 400, (9a)
ze(xlay707t) = G)z(xlayaoat) = 07 —00 <X,y < —+00, (9b)
uz(x17y507 t) = 07 X = Oa —o0 <y < +o0. (90)

2.2. The solution procedure

Transform methods and the Wiener—Hopf technique are used to solve this fundamental problem. The
first step is to apply a one-sided Laplace transform over time to the partial differential equations (8a)—(8c),
taking into account the initial conditions. The transformed function is denoted by a superposed hat, for
example,

/q;(xhyvzas) = ‘/0 ¢(x17y72at)67Stdta (10)

where the complex number s has a positive real part. Next, a two-sided Laplace transform is introduced
over the y coordinate. The complex transform parameter is s¢, and the transformed function is denoted by a
bar, i.e.

+o0
B, &,z,s) = / 0,y z,5)e 2 dy, (11)

Finally, a two-sided Laplace transform is used to suppress the dependence on x;. The complex transform
parameter is sy, and the transformed function is denoted as

+oo
$ ez = [ gzs)e d. (12)
The partial differential equations (8a)—(8c) are reduced to

. d2 *

—ays? 15y + a5?¢2 =0, (13a)
20,2 2 * 2 2% d20*

azs“(n” + &)™ — ass” 150 +a2?: 0, (13b)

i d2 * dze*
—ais’ i +a5?¢;—|—a3¥:0, (13c¢)

where

w(n, &) =PI — )’ —n* = &7, (14)
(0, &) = [pa(1 —on)* = = &1, (15)
ps(n,8) = P31 —vn)’ —y* — &2, (16)
n=a', p=a', p=a’ (17)

The branch points of (1, &), u,(n, &) and u;(n, £) can be obtained by letting
Ml(”? 5) =0, //‘2(177 é) =0, //‘3(177 é) =0, (18)
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which yield

_P1U +1/pio* + (1 — pio*) (p} — 52)
Mo = \/ 1= o2 for p,(n,¢), (19a)
]

—P2U +\/p30* + (1 — p30?)(p3 — 52)
’73,4 = \/ 1 —p U2 for MZ(’/I’ é)’ (l9b)
2

_Pav + p3172 (1 _P3U2)(P3 )
Nse = \/ 1 —p 172 for /'1'3(’/’5 é) (19C)
3

The complex # plane is cut along —oco < Re(#) < 1,, ; < Re(y7) < oo, Im(57) = 0 so that Re(y;) > 0 in
the entire cut 5 plane for each value of y, and likewise for Re(u,, y3) = 0.
The solutions of Egs. (13a)—(13c), bounded as z — oo, are

¢ = Ade M7 4 Be (20a)
0" = allu% — as;"% Ae—silz + allu% — 615}3 Be—s/lzz (20b)
2 2 )
a;ll a3/12
Y= Ce 7, (20c)
where 4, B, C are arbitrary functions of ¢ and 5, and
2 2 2 272 172
o L+ &)+ (ay +as)(1 —vn) L + &)+ (aa+as)(L—vn)” | a5,
Mo = + 1 ) (21)
2a,as 2asas a

N ay

_ |44 22
A3 asu37 ( )
L:ag—ag—alaz. (23)

The boundary conditions are now transformed. With reference to Egs. (9a)—(9¢), define two functions
o (x1,y,t) and u_(x,y,¢) by

0.:(X1, aoata X 207
oot = { g 00 M =0 (242)
_ 07 X1 > 07
u-(x1,3,8) = {uz(xl,y,O,tL x; < 0. (245)
The boundary conditions are then transformed to
P = as)0 + &)+ 2t asi) 44 05 0 = a0 + )+ 2 o — asi) |
1
=3 - 2
s +<7’]767S) S(I—Un)7 ( Sa)

2_ 452 2 as)?
(M—Fil)fz‘l-l- (MHa)éB—%C:Oy (25)

(l3)v1 asiy
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2 ashi y!
(MH])MJF(MJF@)WB%MC 0, (25¢)
asAy a3)u2
(et - ash ) U_(n,¢.5) (25d)
0311 a3)u2 B
where
+o00
L(1.65) = / / (1 ,5) expl—s(Ev + )] dyd, (26)
+00
U_(1,¢,5) = s / / (1,3, 5) expl-s(Ey + )] dyd,. 27)

If A, B, C are eliminated from Eqgs. (25a)—(25d), the result is a single equation involving the two re-
maining unknown functions X, and U_, namely

PR
ul(n,é)Uf o —1

in which

X, (28)

R(n, &) = {[(as — as)’ = ma) (P + &) + ax(1 — vn)*}ptp + y/araap (1 — vn)* (29)
’ 1/(11612()4 + ;»2)

Eq. (28) is of the type that can be solved by the Wiener—Hopf technique, so we may determine X and U_
with a single equation. The Wiener—Hopf procedure requires that the mixed functions in (28) must be
factored into the product of sectionally analytic functions. To do this, we rewrite R(#, &) into the following
form:

(,6) = aaslaray — (a3 — as)”) (1, + )

st —as)Gn + )1~ O + &t + (i =" = &)

+P(1—on)’[(7 + &) + ] + O(1 — vn)*}, (30)
where
P 4(,/a1a2—a2)2’ (31)
a\a, — (613 - 615)
Q: P +a2(a2—a1)+(a3+a5—az)(a3+a2—3a5). (32)

Vaias atlajay — (a3 — a5)2]

It is proved that R(n, &)(1 — 1;;7)_2 = 0 has only two roots in the 7 plane, which can be expressed as

—ctvE\/ct? + (1 = c2?) (2 — &)

Clp = 1 — 202 ) (33)
where ¢ = ¢!
Introduce a new function by defining
R(n, &
S(1,¢) = - b (34)

kika(n — c1)(n — ) (1 — vn)*
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Then, we have

S(na é) = Sl (177 é)SZ(nv 5)7 (35)
where

o ayas

Sl(”7 é) - 2(05 — al)kl
AP+ O + (B —n* = &P + P(L—on)’[(F* + &) + mm] + 01 — vp)* (36)
(1 =un)'(n—c1)(n—c2) ’

~aay — (a3 — as)z W+ W

S>(n,¢) = Tovawm A tia (37)
o a1a5k3
ky = m7 (38)
e e eI /) N
T VeV - [L+(az+as)02]}l/2+{\/k_ — L+ (@ +as)?}

ks = —4(1 = piv?) 2 (1 = p3v?)? + (2= p3v?)* + PR1 — (1 — pho?) (1 = pho?) '] + 0, (40)
ky=[L+ (ar + a5)vz]2 - 4a1a2a§(l —p%vz)(l —pgvz). (41)

The function S (5, &) has no poles or zeros in the complex # plane, the only singularities being the branch
points of the functions p, (1, &) and p,(n, &). In the entire cut 5 plane, S;(#, &) is analytic. When || — oo,
S1(n,&) — 1. According to Cauchy’s integral theorem, S (1, ¢) can be decomposed into

Sl(”aé) :ST(WI,@S((’?, é)a (42)

where

. 1 12
St(n,&) = exp _E/ g
P

g{j:2v (1+ 0282 - &+ (1+ 21 +02;2)—202§2}

(P2 =232 +P2+0Q

4$ +P \/pz_g V ”2—p]]fi 7, 5;5) } (43)

fi(n, &) =

) (44)
(I =v2c)y /(1 + v2fz)g2 - [ tog2+ /(142 ’2) -84+ n(l— 02”2)}

The functions S} (n, &) and S (1, ¢) are analytic and nonzero in the regions Re(n) > 1, and Re(n) < n,,
respectively.

The singularities of S,(#,¢) in the complex # plane are the branch points of the functions 4(1, &),
Ja(n, &), (7, &) and wy(n, &). The functions 4,(n, &) and A,(#, £) possess two kinds of branch points. The
first kind of branch points are those given by Egs. (19a) and (19b), which correspond to 4,(1,¢) =0 or
J2(n, &) = 0. The second kind of branch points are where 23(y, &) — 23 (1, £) is zero. Such points will appear
in pairs. Between the two points of a given pair we may define a branch cut such that 4,(n, &) + Ay (n, &) is
continuous across the cut while 4;(#n, &) and 4,(#, ) are each discontinuous. Therefore, these cuts give no
contribution to the analytic factorization. So we obtain via the use of Cauchy’s integral theorem

Sa(n, &) = 85 (n,8)S, (1, ), (45)
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where
1 P2 2 _ 2 2 _ 2
S3(1,8) =expq —— / 5| BV a ﬁ”/"j = | feln. &) dep (46)
L BV =+ B/ — ]
. 1/2
B L+ ay + as a5 s ooy Lt ar+as
ﬁl,z—{\/[Tzas} +a—2(€ - —¢ ):I:Tza5 . (47)
The functions S (n, &) and S; (1, €) are analytic and nonzero in the regions Re(n) >, and Re(y) < n,,
respectively.
Thus we have
with
Si(n,&) =87 (n, )85 (n,¢). (49)
We also have
i (n, &) = /1 = piv>\/m =\ /my — 1. (50)
Let
VI =M
F(né)=—"——+ Sla
+(71 ) (VI _ CQ)S+(7I, é) ( )
and
vih—1n
F(n,¢) = —Y——F— (51b)

C(m—e)S-(n, )
Then Eq. (28) becomes
plyks (1 — vnp)? 1
- (1, ), 2
e ke LA UL RS LR (52)

It is noticed that the only singularity of the mixed function in (52) in the right half plane is a simple pole
1

at n = v~ This singularity can be removed by requiring the residue to be zero, so we obtain
phika (1 — vn)? 1 . 1 y
v Fi(v, &) = ——=|Fe(n,&) = Fi (o7, O] + Fi (i, €) 2 53
1= piv*F_(n, &) v — 1 07 4) vn—l[ 0,8 —F(o, Ol + Fr(n, )2y (53)

The right-hand side of Eq. (53) is analytic in the region Re(n) > #,, and the left-hand side is analytic in
Re(n) < min(n,,v™!). Therefore, by analytic continuation, each side of (53) represents the same entire
function E(n, £,s). According to Liouville’s theorem, a bounded entire function is a constant. In this case,
E(n,¢&,s) is bounded in the finite plane and E(1, £,s) — 0 as |5| — oo. Thus E(y, ¢, s) = 0, and we obtain

1 F ('8
=T [ F(n,¢) 1}’ 4
= VIR g R ) (55)

-= +
phiky(vn — 1)
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2.3. The dynamic stress intensity factor

When the normal stress on the crack plane z = 0 has been obtained, we come to the determination of the
dynamic stress intensity factor for the fundamental problem. The stress intensity factor in the Laplace
transform dormain can be expressed as

K (&s) = lim [2m0)" %5, (1, & 5))- (56)

From the Abel theorem concerning asymptotic properties of transforms and by virtue of Egs. (26) and
(54), we obtain
- . 2
B (2s) = lim [2o0) P2, 5] = Y2 071, (57)

s B

Further, we have
]’{F(é 5) = V2 Vol =, (58)
e s (vl = )8, (v 1, &)
The inverse two-sided Laplace transform of (58) is

~F op+ico \/z —-1 _
ky (,5) = — VE —T2 exp(séy)de, (59)

~2mi sV20 (071 — ¢)S, (v, &)

where y > 0 is assumed for the time being.
The Cagniard-de Hoop method is used for the inversion. It is easily known that the integrand of (59) has
the branch points of & = +ay, £ = +by and & = +¢; in the & plane with

|_pi P c
=1\ — piv?¥ bo = 1 — p3v? =V Zar (60)

In order that the final inversion of the one-sided Laplace transform over time may be performed by
inspection, we now shift the ¢ integration to the contour as shown in Fig. 2. The integrand of (59) is analytic
and single-valued inside this contour. According to Cauchy’s integral theorem and Jordan’s lemma, we have

12
~F \/Z(l o 0202) 00 l:l —+ vm}

ky ( ,s):——22 Im
T/ u(1 = piv?) Ja [14—1) /c2—(1—c21)2)52}5'+(vl,§)

Upon noting that k¥ (y,7) is an even function of y and from the convolution theorem for Laplace
transform, we finally obtain

oy —ioco

exp(—s)de. (61

1/2

V2(2? — 1) T [1 + UM} .

—Im

/(T =pie?) Ju O [1+v c2—(1—c2v2)52]5+(v1,c’) V=i

kK (v, t) = (62)

3. Case of general loading

We now consider the extension of the half plane crack under general loading. Suppose that the crack is
stationary for ¢ < 0 under equilibrium loading, and the resulting normal stress in the z-direction along x > 0,
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¢ —plane

a, by c

Fig. 2. The integration contour.

z=0is 0,.(x,y,0) = p(x,y). At time ¢ = 0, the crack begins to extend in the x-direction with a constant speed
v, creating new traction-free surfaces (0 < x < vf, —o0 < y < 00, z = £0). The stress wave field associated
with the extension may be considered to be the superposition of the dynamic field created by imposing
tractions —p(x,y) (0 < x < vt, —o0o < y < o0, z = £0) on the crack faces, and the static field for ¢ < 0.

The dynamic field due to the action of —p(x,y) (0 < x < vt, —00 < y < 00, z = £0) on the crack faces
can be obtained by using the solution of Section 2. Following the arguments used by Freund (1990) for the
mode I plane problem, the general expression of the stress intensity factor may be written as

o0 vt
Ki(y.1) = / /0 K — 31— X fo)p(eyf) A d, (63)

which is useful for numerical computation when a general p(x,y) is known.
In the next, particular tractions of constant distribution are considered. Firstly, we discuss the case of
line load action. The traction can be expressed as

px,y) = =pod(x), =y <y <. (64)
The stress intensity factor for this case is
0
ki) =p [ KO-y 0. (65)
“

The Laplace transform of Eq. (65) is given by

N W ~F
K0 =p [k -y (66)
.
The substitution of (59) into the above equation leads to

— ap+ico 1- op+ico 1.
ki) = 2% [ SR @) enbetrn)di - 2% [ SR @) explstly - lld (67
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From Eq. (58) and in a similar fashion as Section 2.3, we obtain

\/_
K1) = Y2 (] = 30,0) — (] +0.8)] For ] > 3o (68a)
Ki(y,1) = Vip(L =)Vt
(1 +ve)Sy (v7!,0)y/mu(1 — piv?)
V2
2 (] = )+ (D 4 0,00]for ] <o, (68)
where
1/2
L+vy/pt = (1= p}?) & .
1 — 2 t)2 [ 1 1
nop=—4=<) [ de (69)

o(1 = pie?) Jay 5P+v a—u—éﬁﬁﬂ&@‘é) -

Further, the solution for the traction of constant rectangular distribution can be obtained. In this case,
the traction is expressed as

px,y)=—p, 0<x<uvt, =3 <y<n. (70)
The stress intensity factor for this case can be written as
KP (1) / Kyt — X' f0) d. (71)
Using Egs. (68a) and (68b), we finally have
2V2,
K2 (,1) = 25 (] = 30,1) ool +30,0)] For | > 3o (72a)
K (y,1) = 2o =W H oo 292 (v = 30,1)
T (4 008 (071,0)/r(1 = phe?) /2 ’
+ A ([ +x,1)] for [y <, (72b)
where
1/2
, 1+uvy/pr—(1 —pZUZ)éZ]
22 1) [ 1 1
hy=d=cv) [ Vi — JEdéE. (73)

= elivnfe - -end]s.o.0

4. Numerical results and discussions

The integrals in Eqgs. (62) and (73) cannot be evaluated in terms of elementary functions. To make the
physical meaning clear, a numerical integration of them is carried out for Poisson’s material which is
isotropic and for Beryl which is transversely isotropic.

Poisson’s material: a; = a, = 3as, a3 = 2as, ay = as, c = 1.088/,/as.
Beryl: a; = 4.12484as, a, = 3.61802as, a3 = 2.01199as, a, = 1.17363as, ¢ = 1.04645/ . /as.
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Numerical results for the fundamental solution are shown in Figs. 3 and 4 with the solid line representing
Poisson’s material and the dashed line representing Beryl. In the figures, the stress intensity factor history
has been normalized by SIF = kF(y, £)(ny)*>.

It is seen from the figures that upon the arrival of the dilatational wave, the initial response is dilatational
and the crack faces tend to move towards each other, which is reflected by the stress intensity factor being
negative. This phenomenon is intensified by the action of shear waves. When the Rayleigh wave arrives, the
stress intensity factor becomes logarithmically singular. For Beryl, this process is delayed due to the ma-
terial anisotropy. Thereafter, the crack faces begin to open and the stress intensity factor increases until it
reaches a maximum. Then, the stress intensity factor decays gradually towards its limiting value of zero. It
is seen that the presence of the anisotropy leads to the increase of the stress intensity factor.

It is observed that the stress intensity factor history is greatly affected by the extension speed of the crack.
The faster the crack extends, the smaller the stress intensity factor becomes.

Figs. 5 and 6 display the variation of J,(/, #)/v/2 with normalized time. Unlike the fundamental solution,
there is no singularity in the stress intensity factor when the Rayleigh wave arrives. It is also observed that
the anisotropy leads to the increase of J,(1,7)/v/A.

0.5

E -0.5

-1.0

t(ayy)

Fig. 3. The dynamic stress intensity factor history (v = 0.8¢,).

1.0

SIF

1 " 1 " 1 i 1

3 4 5 s 7
(agy)

Fig. 4. The dynamic stress intensity factor history (v = 0.4¢c,).
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Fig. 6. The variation of J with normalized time Ty (J = J,(4,1)/vV2, Ty = t/(ay)), v = 0.4c,).

5. The conclusions

The mode I extension of a half plane crack in a transversely isotropic solid under 3-D loading is ana-
lyzed. Firstly, the fundamental problem that the crack is subjected to a pair of unit point loads on its faces
is considered. The solution procedure is based on the use of transform methods, the Wiener—Hopf tech-
nique and the Cagniard—de Hoop method. An exact expression is derived for the mode I stress intensity
factor as a function of time and position along the crack edge. Then, the stress intensity factor history due
to general loading is obtained using the fundamental solution. Some features of the solutions are discussed
through numerical results.

In the analysis, the half plane crack is assumed to propagate with a straight edge. For practical appli-
cations, this solution can be applied to the cases when loads are almost uniformly distributed in the y-
direction. Under general loading, the crack edge may become curved during extension. However, the
solution can also be applied when the edge curvature is large. For other cases, the curved edge may be
treated as the perturbation of a straight line moving at a constant speed v and described as

x=vt+eg(y,t) + £y, 1)+, (74)
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where ¢ is a small parameter and g;(v,¢) (i =1,2,...) are functions determined with an initiation criterion.
From the above equation, we can see that the present solution serves as the zero order approximation of the
problem. In order to obtain a complete solution, g;(y,¢) (i =1,2,...) must be determined firstly with an
initiation criterion. Unfortunately, this criterion has not yet been available for three-dimensional crack
problems.
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